Categories
Economics Ethics Technology

Economics of bodybuilding – the new bot

The best story that I had heard for the week was that of an “aspirational” techno geek of Hong Kong who made a Scarlett Johansson (ScarJo bot) clone. I mean a robotic clone. Though this bot can be the future of objectifying women, I would be happy if I were greeted by one of them when I step into a hotel (which I cannot say in front of my wife, though). But what have we achieved so far from the bionic technology? According to the creator of the ScarJo bot, it took eighteen months and just over $50000 to complete this amazing project in his patio with a 3-D printer and the self-learned software. Moreover, our Siri is a woman and our Cortana is also a woman! On a lighter note, if a bot would exist to perform labour or any personal assistance, I bet it would be a woman and I felt it is so obvious with our physiological and evolutionary requirements.

But what is bionics? It is defined as anatomical structures or physiological processes that are replaced or enhanced by electronic or mechanical components, which would assist in acquiring extraordinary powers or capabilities of being superhuman. Bridging the gap between man and machine, once a science fantasy is now a global industry.

In the age when Europe is lacking people to work in their fabulous factories and China thrashing up its one-child policy considering the exploding old age population, do we need to think an alternate through the bionic humans powered by artificial intelligence? Tomorrow I might have a bionic human in the family – a  cybernetic organism (a cyborg) that knows more about me than I know about myself. These organisms would be a complex hybrid system (may be living or non-living, I am not sure how we will draw the line between living and non-living) combining biological and engineering parts. With the current technology that could control the limbs with the thoughts alone, just as the way in which our limb performs, the extended application of such a technology is limitless. As I had always dreamt during my examinations about getting the access to my classroom notes just through a pen drive plugged into the brain, I believe this possibility is not as far as we think. In future, except the logical decisions that we could take considering the information available, the rest of the data can be loaded and unloaded to the brain as we need.

From the time when amputated humans were assisted with the twigs from the tree to the intelligent eyes that helped the blind to understand the colours of the world, we have made an immense progress in bionics technology. In the new era of the machines when humans are required to satisfy the social and physiological needs of humans, we could see a transformed era of bionics which can reduce the impact of ageing and make the older more mobile. Will this increase the retirement age? Need to wait and see.

As the elderly population grows so is the global bionic industry. Extending the life of ageing limbs and the functioning of the damaged ones, in the next 5 years, this industry is expected to grow over 20 Bn., unless there is a disruptive breakthrough. If such a breakthrough happens it will be much bigger. By 2050, it is expected that the elderly population of the world would be around 16% (around 1.5 Bn.). In developing countries such as  China, the older population (those over age 65) is likely to swell from 110 million today to 330 million by 2050 and that of India from 60 million to 227 million. The key problems for the elderly include the lack of mobility and the companionship. If the new bionics age is able to address these growing needs of the population, it would be the next game-changing field for the years to come.

The bionics will also level the playing field between the physically challenged people and the common human. More than 1 billion people have some form of disability. This corresponds to about 15% of the world’s population. The key disabilities for them are related to the vision and the mobility that are being addressed as we speak. If such new technologies become scalable and mass production of these inventions are achieved, they would turn out to be a boon for the amputated and disabled.

Another possibility is to look at the need for a mechanised organ that could be developed through the technology. The current transplantation covers only 10% of global need. Either the world has to move to an organised organ market to kerb the black market of the organ smugglers or it should find a biological or mechanical source through technology to build a stockpile of bionic organs that would address the growing global organ demand.

So we should be ready to accept a new family member, who could help us in our old age and possibly a limb or an organ that would be a machine to be part of our aura. The blend of man and machine of the future would be a necessary transition for the generations to come and thus see ourselves as civilised and rational cyborgs.

Categories
Economics Technology

Is the future of food we eat is still a mystery ?

After celebrating the new year, I decided to give my wife a break and hence devour in one of her favourite restaurants. We went to a Japanese restaurant and ordered grilled meat Yakiniku, one of the full-fledged Japanese steak. When I asked the manager about the quality of the meat used in the steak, he conveyed to us that the restaurant uses meat only from sustainable sources. I smiled at him and started to think what would define the sustainability of food consumption, especially meat. I started to wonder how the food platter will look 20 years from now? In the modern era of culinary laboratories such as El Buli and fine dining chefs from Michelin’s, where we refine the science of gastronomy, should we be a little more sensitive about the methods of sustainable agriculture?

Let’s explore how as a human race, we have mastered the techniques of the production and consumption of food. If we take the case of arable land,  one-third of such land is used for agriculture and 70% of that land is used for growing only meat. Is this an efficient way to harness the productivity of nature? On the consumption side, we are doing a commendable job. The world’s population is predicted to hit 9Bn by 2050 and the food demand is expected to increase at least by 60% for cereals and 85% for meat (according to World Bank). How would we satiate this enormous appetite for food?

The post-world war agricultural development in developed countries and green revolution (not so sure whether we should call it a red revolution or green revolution), which encouraged the insensitive use of fertilisers and pesticides in agriculture, have contributed one-third of freshwater pollution with elements such as phosphorus and nitrogen. The insensitive usage of hybrid and GM crops has extinguished the local varieties resulting in soil degradation and sky rocketed sales for the Monsantoes and the Potashcorps of the world. The highly acclaimed “positive effects” of these changes are levelling off in terms of production and pests are getting increasingly resistant to disease. Taking into account the current production rates, our current agricultural output will not meet the projected demand of the world.

Moreover, it would be an amazing fact to note that around 50% of the antibiotics are used in the cultivation of crops and rearing of livestock, not on humans for which they were intended for. By the way, these antibiotics are not being used to fight diseases that spread among animals but to increase their weight, ensuring higher meat output. Interesting paradox !!!

Water stress and desertification that have been the results of global warming are reducing the amount of arable land available every year. Dramatic changes in the consumption patterns of protein rich food in emerging economies such as China and India are going to catalyse the slaughter of livestock day by day. Another interesting anomaly to note is that 20% of food produced or harvested is lost owing to insufficient processing, storage and transport. To give a perspective, every day around 4.4 million apples, 5.1 million potatoes, 2.8 million tomatoes and 1.6 million bananas are thrown as waste. This is not just a waste of produce, but also is a loss of the factors of production.

So how would future generations address these problems? It would be interesting when our kids get us bugs for a protein rich diet. Are we ready to accept the bugs instead of beef?

Even though Creative ideas like Lab-grown meat, 3D printed food on request and the meal in a pill are still in the labs with exorbitantly expensive bills, such technologies will be the way forward for coming generations.  The concoction of algae and living tissue from a livestock currently brews in a sugar scaffolding at a cost of US$32500 to make a piece of burger sized meat. Can the brew be a little cheaper on a larger scale? Something yet to be seen.

But another alternative that can be seen in future could be vertical farming. When the technology becomes more efficient, the current industrial and technology districts may alter it’s size and shape to semi-agricultural factories producing year round produce or carniculture through indoor farming. Even though we haven’t been able to perfect the formula for baby milk since last 200 years, we would be forced to perfect the formula for a meal in the pill if that could partly solve the instant food problem for the rich.

What would be the economic impact of these technologies?

The current consumption of meat is over 200 pounds per person per year in US. (In India, it is just around 6 pounds). It is estimated that around 200 gallons of water are consumed in the process of making a single pound of beef and around half of it is consumed in the process of making poultry. If there is a shift of the Non-vegans in developed economies to any of the alternate sources of protein, the process will have a huge impact on the economics of natural production of food.

If we consider the alternative to eating “cold-blooded bugs”, a change synonymous to the shift of our generation from incandescent bulbs to LEDs, the future food platter would be more sustainable and nutritious. The process of manufacturing bugs consumes so less energy and a lot less land considering the factors of production for other sources of food.

May future generations consider options such as having bugs instead of beef and a deeply learned computer controlled vertical farming, that reduce water usage through hydroponics, thus reducing greenhouse gases.

Hail the kids who would decide that for us !!

Categories
Economics Geopolitics

Is the defense spending a precursor to Economic Supremacy?

I am quite sure you will not agree. But you will agree to the fact that the empire that had the strongest military always ruled the world both economically and politically and thus achieved the world domination. If one scroll back through the pages of history,  British defence share of government expenditures during the 17th, 18th and 19th century were up to 75 % of GDP, never dropping below 55 %. The predecessors for British were the Dutch who had even larger numbers to boast.

If you look at the spending pattern of US on defence, it was less than 1% during the Renaissance, grew to around 12% of GDP during the Civil War of the 1860s, 22% during World War I and culminated to staggering 41% during the WWII –  the time of the universal call by Uncle Sam for the Armageddon. Even today, U.S. military accounts for a staggering 40% of global military spending. More of a fact, US annual spending on the military is higher than the next 13 nations combined. To give you a perspective the constitutional democracies build by the people, for the people (I am not so sure about that) and of the people, as the Uncle Sam says, the allies of US account for over 80% of military spending of the world. Wow, that’s quite a large number!

But have you really thought why this country and its allies alone are spending so much money on defence? At least for a few of us, when we speak of value, the ‘Dollar’ term creeps in. Why are we speaking so much about the Dollar?

Even though there are over 180 currencies in the world, the cost of crude, an investment made by IMF, the debt of countries and even the Big Mac Index is always measured in Dollars. If we look at global forex transactions, there is a 44% chance that one of the currencies in the transaction is the greenback and hence it enjoys the status of world reserve currency. Are we reading about completely unrelated topics?

Not really. This insatiable “recall” / “demand” / “a belief” in dollars has handed the U.S. government a virtually unlimited credit card and a perfected money minting machinery. U.S., with a debt of about $60 trillion, is currently the world’s biggest debtor nation. Due to dollar’s role at the centre of the international monetary system, US has the largest domestic debt securities market ($30 trillion) which is more than double the size of the next largest domestic market Japan ($1 trillion). The defence superiority also enables the country to forge international economic and military partnerships, a trend which points to the country’s strategic clout. This is what the US achieves by retaining its first rank in the defence and military spending, which otherwise would be difficult to maintain in competition for a global superpower. Although China is trying hard to crack to this by making its presence felt, Grand Old Uncle knows that Military prowess and economic prosperity are not zero-sum games. Although “democratic countries” know that they have the potential to realise $1.30 of extra private spending over a period of 5 years for each $1.00 reduction in defence spending (study by Mercatus Center), will our Grand Old Uncle change its military and geopolitical strategy in Emerging markets for such a silly gain?

Let’s wait and see how Uncle tames the dragon… !!!