A few months back I had been to a prominent hospital since my dad had to undergo an orthopaedic surgery. During my stay at the hospital, I got quite accustomed with the staff and they showed me an uncommon tranport mechanism. It moves the patient’s blood samples and prescription medicines across the hospitals through Pneumatic tubes. They are systems that propel cylindrical containers through networks of tubes by compressed air or by a partial vacuum. Even though it is an age old technology, of the late 19th and 20th century, I was impressed with the precision and the swiftness of the transport. Can such an integrated system be the framework of our future transport? Can this be the older working model of the proposed hyperloop powered by pneumatic energy?
Since the introduction of trains and cars in the early 19th century, nothing much has changed in the industry. We still rely on the modified forms of such transport mechanisms. But is the future going to be the same in the coming decades?
The transportation sector as we see it is around 5 trillion dollar industry. In the next few decades, it will be one of the industries that may see innovations. Such innovations could include driverless cars and public transports, intergalactic or interstellar travels and hyper loops. The hybrid of a Concorde and a railgun and an air hockey table – the hyperloop is expected to take the centre stage of this transformation. Even though it is not an innovative concept, the idea has gained enough of traction. Even India plans for its working hyperloop in the coming decade! The first outlay is expected from New Delhi to Mumbai in 70 minutes flat, or three times faster than a commercial flight (a max speed of 760 miles per hour). The pilot funding of expected at $120 million. On the revenue side, a single tube could carry 1.44 lakh passengers daily at 40-second intervals with an average ticket price of under Rs 600 (around 10 dollars).
So how does it work? According to Elon Musk, the propounder of the system, it is a tube over or under the ground that contains a special low-pressure environment. The cars are propelled through this tube with high-speed fans that would compress and push the air for their propulsion. These cars would be floated in the chamber with Air bearings that would make these capsules to levitate in the tube to reduce friction. The entire system will be driven by solar power.
Now let us look at the economics of this transportation system. According to World bank the per-mile cost of building this loop is pegged at around $40 million per kilometre compared to High-Speed rail project at $56 million per km.
Can this technology play a bigger role to play in the future of freight transport too – an industry that powers the global trade? Given that we’re planning to move containers and pallets on-demand at speeds far in excess of today’s rail and highway options and far less expensively than by air freight, an integrated framework of such seamless nodal transport would be the future of not just human transport but of the goods too. This will reduce the inventory costs and have a better supply chain around each nodal city. Technically this is mentioned in economics as agglomeration – clustering of people and firms. This can lead to more innovative delivery mechanisms of medical/perishable goods and motivate regional economies for greater specialisation, thus reducing the overall cost and quality of global freight transport.