Categories
Economics Ethics Politics Science

Future, Pyramids, World-scrapping, NOlympics, Cooperation, Salmon

Since our current technologies advance exponentially on a timescale of several years, our future habitat on Earth will look entirely different a million years from now. What does a mature technological civilization look like after such a long time? Can it survive the destructive forces that its technologies unleash? One way to find out is to search for technosignatures of alien civilizations, dead or alive. Inevitably, all forms of life eventually disappear. The universe cools as it expands, and all stars will die 10 trillion years from now. In the distant future, everything will freeze; there will be no energy left to support life.  

https://www.scientificamerican.com/article/what-if-we-could-live-for-a-million-years/

Perhaps, instead, captured CO2 could be injected into porous rock, such as subsurface basalt, similar to a technique pioneered by Carbfix in Iceland. Over a process of several years, carbon dioxide would solidify into calcite crystals and this bedrock could be quarried for use as a building material. As in ancient Egypt, monolithic slabs of stone could form pyramids, either built in situ to help bolster tourism in Iceland, the African Rift Valley, and other areas rich in malfic rock; or conveyed over unfathomably long distances for reasons that might seem obscure to future generations. Such structures would be durable and their construction would likely employ large masses of people, but the process would be extremely energy-intensive. Moreover, the majority of these pyramids’ volume would be taken up by the host rock, not sequestered carbon, meaning that we would need to construct far more than our original 138,462 pyramids.

https://strelkamag.com/en/article/138-462-carbon-pyramids

Worldscraping has incredible potential. We’ll be able to extract our own data without needing Amazon or Google’s permission. We can make a better food database, a better catalogue of plants and wildlife, a better map of the world, anything you can imagine that requires information about the real world, all with far less work and in far less time.

The big losers from worldscraping will be incumbent companies and tech giants. They’ll want to keep worldscraping for themselves, and they’ll say it’s because only they can be trusted to use it.

But they aren’t the only ones who can keep us safe. There are ways to secure computing devices without unaccountable gatekeepers or expert users. Contrary to what Apple would have you believe, we all use software every day that’s as safe as anything inside their walled garden, if not safer. We need to support and learn from those third-party companies and open source communities as we head into the next generation of computing devices.

Should the Olympics cease to exist? It’s a question I never thought I’d ask. I did gymnastics when I was younger and have been thoroughly obsessed with the sport ever since. I even built my writing career around gymnastics, so the Olympics — where the sport is a perennial favorite — factor heavily into my work (and my income).

“I had an emotional attachment to the Olympics growing up as an athlete,” Itani said. “It’s such a well-produced media spectacle. It’s amazing to see these athletes, the quality of the camera, the angles, the stories of the athletes in the Olympics that are covered by the media.”

I experienced the same emotional attachment that Itani described — and still do. I was aware of all of the harm that the Olympics brought to communities but I took a reformist approach: we could preserve the good and eliminate the bad through smart policies and transparency. But reform hasn’t worked. In 2014, the IOC introduced Agenda 2020 to make reforms to the bidding process and curb the excesses of hosting the Games. Yet the tab for Tokyo 2020 is more than triple what was originally projected.

Game theory shows us that, regardless of what an individual believes, it is in their own self-interest to wear a mask.

While the conflict surrounding wearing masks will persist, these insights shed light on a new perspective on the benefits of wearing masks during this time, even outside the realm of public health and science. Next time you encounter a family member, friend, co-worker, or even a stranger who is against wearing masks, consider explaining that their decision, although self-interested in the short-run, only hurts them in the long run.

Just like in the prisoner’s dilemma, cooperation results in the most efficient outcome. If we cooperate and wear masks, the pandemic will be better mitigated and we may finally find true freedom again.

https://thedecisionlab.com/insights/health/game-theory-can-explain-why-you-should-wear-a-mask-regardless-of-what-you-believe/

Salmon are at home in color. Whipping her tail, a female salmon spends two days making a depression in the riverbed called a redd—the word probably comes from the Early Scots ridden, meaning “to clear”—into which she deposits her roe. Fertilized, these red spheres of nutrients encase young salmon, who eat their way out, taking the color inside. Once the eggs are depleted, salmon swim to the ocean in search of food. There, they feed on red-pink crustaceans, mostly shrimp and krill, as well as small fish with even smaller crustaceans in their digestive systems. From these, they absorb yellow-red orange fat-soluble pigments, called carotenoids, that tint salmon salmon.

View and Listen

Listen to Your Key: Towards Acoustics-based Physical Key Inference

Monstrosity of group theory

An interesting video on asteroid mining that could be the future of resource extraction and the possibility of endless technology.

How did they do it? The Antwerp diamond heist, dubbed the “heist of the century” – a depiction by a Belgium detective.

https://overcast.fm/+Ip9Jb2GP0

Sound recordist visits some of London’s historic palaces and captures what he hears there.

https://lnns.co/hnLFOCdGr15

Categories
Economics Environment Technology

Are the new age business supply chains turning Ouroboros?

Robert H. Goddard, the rocket pioneer, after whom the Goddard Space Flight Center was named once wrote about long-duration interstellar journeys in his essay “The Last Migration”.  He speculated that human race will send out expeditions into the regions of thickly distributed stars, taking a condensed form of all the knowledge of the human race. Pondering on the concept, I was attending the class of Prof. Sergio Chayet at WashU, where he introduced us to the concept of Just-in-time production. In the class, I realized that the business supply chains of the modern era work in a linear fashion. We produce and consume in endless supply chains. The business mantra that runs our traditional economics is the extraction of maximum profit from existing resources.

To support the model of sustainable profitability, we rely on a linear approach. We take, we make and we dispose of. To achieve profit overtimes (we do not bother whether it is sustainable or not) we transformed our economy into a cowboy economy. Since the time we settled in civilisations, the cowboy economics created the rich and poor divide in the society. The cowboy economic principle is centred on taming and exploiting a seemingly endless resource frontier. This resulted in an exorbitant appetite for resources. According to International Resource Panel, a UN body that consists of scientists and policymakers, estimates that primary materials extracted from earth rose from 22 Bn tonnes in 1970 to 70 Bn tonnes in 2010 and by 2050 the planet will need 180 Bn tonnes of material a year if the trends continue.

Is this a sustainable use of resources? It is a good time for every corporate citizen to think before it gets too late and the changes become irreversible. If we could portray the human civilization on a spaceship earth travelling to a ‘destination’, can this economics survive till we reach our destination? Is this the time to rethink our business models? We cannot allow modern business to become Ouroboros – the serpent that eats itself.

Based on the simple concepts of waste reduction, reusing and redesigning product and process flows, there is a possibility that we could still reach our ‘destination’ in a sustainable manner.  We can preserve and enhance natural capital available for future generations.  This is the concept of Circular Economics. According to Ellen Macarthur Foundation, a circular economy is restorative and regenerative by design and aims to keep products, components, and materials at their highest utility and value at all times.

The concept is congruent to the living world. There is no waste. It is just the flow of material from one form to the other. Energy is provided by the sun, things grow, then die and nutrients return to the soil and the system circulates. It is a system that has evolved over 4 Bn years. But what about human technology that runs our businesses? In the modern era when the new technology comes up, we ditch the old one. Let it be our mobile phones, Televisions, refrigerators, washing machines and the list is endless. When the iPhone X is launched no one needs the old one and Apple stops the support of the older models. Each time we use and discard, we are eating into a finite supply of resources. As an output of this process, we produce toxic waste. Technology is evolving at a much faster pace. So is the waste that is generated as part of these business ecosystems. By 2030, 3 Bn more middle class consumers will have access to latest technology. This is fantastic, but at what cost? Can the current way of consumerism be transformed by circular economics? If yes, firms can recirculate their products without any waste in their production, distribution and consumption supply chains. If companies stop selling products and start selling services, we will see this change. For example, if Apple starts selling its smartphone as a service instead of a product, the firm will have a motivation to circulate its older models within the supply chain and reduce the push of newer versions to the market.  In such a scenario, the customers can enjoy the latest technology without creating a perceivable dent on resources.  Consumers will be more interested in services and performance of such offerings rather than the product. This change in the business mantra can motivate firms to consume resources in a sustainable way and we could reach our ‘destination’.

Categories
Economics Geopolitics Technology

Emergence of the New five data sisters

On August 28, 1928, in Achnacarry Castle of the Scottish Highlands, there was a private appointment among a Dutchman, an American and an Englishman. If anyone knew the potential of oil, which could turn the fortune of corporations and empires, it was them. The Dutchman was Henry Deterding of Shell, American was Walter Teagle of Standard Oil the current Exxon and the Englishman, Sir John Cadman from Anglo-Persian Oil Company, soon to become BP.

With fuel-hungry ships, planes, and tanks on one side and the fast developing automobile industry on another side, when the oil became “the blood of every battle and economy”, it was these corporations that the oil men founded later known as the seven sisters, became the cartel that waged the merciless contest of money. There were times prior to the 1973 oil crisis when these Seven Sisters controlled around 85 percent of the world’s petroleum reserves.

Now let us consider the same perspective for the data. Since the time of counting, we have used information for making decisions. But it was never before this information used to be so concentrated in the hands of a five new emerging sisters. ‘Google’, ‘Facebook’, ‘Amazon’, ‘Apple’ and ‘Microsoft’. If we consider Google, there are over 100 million active users. It also has youtube with 1 billion unique monthly visitors. Facebook boasts around 2 billion monthly active users (Let alone the Instagram and the marketplace). Apple too has over 1 billion devices that are actively used around the world. Over half of the product searches happen on Amazon that has over half a billion active users. As far as the oldie Microsoft is concerned, 1.2 billion users use their product globally across over 100 countries. With Internet of things (IoT) developing, the world we survive is turning to a mine that churns out the new precious commodity data.

So what is the data that these companies are collecting from their users? They gather the information such as ad clicks, device details, email addresses, facial details, IP and location details, phone numbers, personal profile, search queries and the time information.They do it through cookies, device tracking and third party codes that we may not be much aware. We may not be even so much concerned about this information. But it makes a lot of logical sense for these companies to understand and predict the user behaviors. We will understand their power when PWC estimates the addressable market size of data to be at $1.3 trillion by 2019.

The question that whether the data is the new oil is not new. The data explosion has been predicted since 2006. There are 3 characteristics that are common for any resource that become such a powerful economic driver.

First is it’s omnipresence. If you consider the oil, it is not just a driver of our car. It is vital to the production of many everyday essentials. Oil’s refined products are used to manufacture almost all chemical products, such as plastics, fertilizers, detergents, paints and even medicines, plus a whole host of other products that you might not expect. Overall only 60-70% of the oil is consumed in the transportation sector that includes land, air, and water. Balance is consumed in chemicals and pharmaceuticals industry.

If the same parlance is taken, the mobile and smart devices that we use ever day has become the opportunities for interactions that produce customer data. The 2017 global edition of the GSMA’s ‘Mobile Economy’ report reveals that there is a 5 billion mobile subscriber base out of the global population of 7.5 billion. This is massive !!

Second is its economics. Through its extensive supply chain, the oil and gas industry employs hundreds of thousands of people and make a major contribution to the global economy in terms of global trade and technologies. Over 5-6 million people work directly in this industry globally and several million more indirectly. According to market research by IBISWorld, a leading business intelligence firm, the total revenues for the oil and gas drilling sector came to $5 trillion in 2014. 2015 estimates for global gross domestic product range between $77 trillion and $127 trillion. The oil and gas drilling sector make up between 6% and 8% of the global economy.

If we take the statistics, according to Forrester Research, Global tech industry is over $3 trillion and approximately it is over 3% with an average growth rate of over 5%.

The third is the potential for high correlation to the global economy. If we look at the correlation between the oil prices and the global economy, it is fairly complicated. The prices of the oil determine the fiscal and monetary policy of the governments.The fluctuations of its price could severely impact the corporate and sovereign ratings thus driving the investments in and out of a country. This is a direct impact on the common man whose daily life is impacted in all ways by the fluctuations of this commodity.

Similarly, if we take the impact of data, it is the dark horse that drives the consumer behavior. The targeted advertisements and customized product launches for specific user requirements are the ways to go.

But can we expect the nationalization drive that happened in the oil-rich nations will not happen again? The way in which governments responded to the 7 sisters, by nationalizing the oil resources, we possibly could see the nationalization of data. Since the new 5 sisters are extracting this resources free of cost and profiting from it, it may not be long enough to see this transformation. But I never expected that the history would repeat so perfectly.

Categories
Economics Environment Technology

Technologies in the new era of agriculture

I had been on a casual chat with my brother in law, who is running agri-business in Africa. I was surprised with the efficiency with which the agricultural economy was running and how the farmers are even using drone technology to do aerial surveillance of their farms. Curious on these advancements, I decided to do some research on the new developments in the field of agriculture.
The agriculture as a sector has a mammoth problem in hand – to feed the 9.6 billion people (as per FAO prediction) who are going to inhabit the planet by 2050. If this number is achieved by our efforts, then the food production must increase at least by 70% from the current levels. This has to be achieved despite the limited availability of cultivable lands, increasing need for fresh water and change in weather patterns that would come with the impact of climate change.
There are a few technologies that I found interesting and could change the way the food comes to our table. Have you ever imagined what is the average time for a newly harvested apple to reach to your table? One week, one month, three months..sorry! On an average, it takes around eleven months to reach your table. By that time you can be pretty sure that it is just a sugar ball rather than a fruit rich in antioxidants. So what if we could do a teleportation of such food items from one corner of the world to another corner. It is not a new Starwars movie in making.
Through the Open Agriculture Initiative at MIT Media Lab, we have made personal food computers possible. This could possibly make you and me the farmers of the future. This is a tabletop-sized, controlled environment provides agriculture technology platform that uses robotic systems to control and monitor climate, energy, and plant growth inside of a specialized growing chamber. By manipulating climate variables such as carbon dioxide, air temperature, humidity, dissolved oxygen, potential hydrogen, electrical conductivity, and root-zone temperature we will be able to yield various phenotypic expressions in the plants, means we would be able to create a “climate recipe” suiting our taste. Through this project, this information can be shared across the globe on an open architecture platform to develop customised fresh vegetable and fruit recipe.Soo tomorrow we could have an apple made suiting the crispiness and sweetness customised for our taste buds. It could potentially allow farmers to induce other abnormal conditions such as drought and saline environment producing desirable traits in specific crops that wouldn’t typically occur in nature.
Another silent breakthrough happening is the creeping of Internet of Things (IoT) to the agriculture. We have started to use remote sensing technologies to make agri-farms more intelligent – means to make smart farms or feedback farms. So how do such farms work? These farms use remote sensing technologies that would observe, measure and respond to inter and intra-field variability in crops using the data gathered from farm and crop yields, atmosphere and soil-mapping, food and fertiliser consumption and weather data and apply feedback to the support systems. Such information collection is done not just in farming, but also in livestock and fishing. There are companies such as Anemon from Switzerland and eCow and Connected Cow from UK that tracks the health of livestock and recommend live solutions to the owners.Similar technologies are coming in the fish farming too. Eruvaka from India has developed a system that would control pH, dissolved oxygen, physical composition of water thus helping the water quality to be maintained effortlessly in aquaculture.
The main concerns that could come in implementing such cutting edge techniques are the ownership of data and the issues in communicating the technicalities to the farmers. In 2000, there were 525 million farms on record, out of which not a single farm was connected to the Internet of Things. IBM expects that by the year 2025 with the same base of 525 million farms, there will be 600 million sensors in use at these farms and by 2050, there will be two billion sensors used in 525 million farms – representing a major shift towards technological advancements.
Another development that would be of my interest is the one that has been developed during the interplanetary exploration endeavours of NASA in the late 60s. Since the travel time to Mars could take a year or even longer and the space on board and the resources were limited, NASA had figure out how to produce food with minimal inputs. It involved single-celled microorganisms that used hydrogen from water and the carbon from the carbon dioxide exhaled by the astronauts and converted into a nutritious, carbon-rich crop and eventually to a meal. The types of microbes that they used were called hydrogenotrophs – nature’s supercharged carbon recyclers. These organisms created a virtuous carbon cycle that would sustain life onboard a spacecraft, thus creating a closed-loop carbon cycle.
How beautiful would it be if we can convert the increased carbon levels in our atmosphere to edible food and solve the problem of hunger? To cope up with the incoming demand of the food, I believe the modern agriculture simply cannot sustainably scale to meet that demand. We could use the existing land resources to get better outputs through the new methods of the web and dig out the techniques that could have been used for our interplanetary expeditions.
The future of food is not about fighting over what can be done and what cannot be done. The future of food is about networking the billions of farmers and the consumers and empowering them with a platform to ask and answer the question, “What if?”
Categories
Economics Environment

Economics of fashion and pollution

It is my daughter’s holy communion and my entire family was busy in getting the best fashionable attire for her. When I had the first look of the attire it was soft as silk and was magnificent. Angels would shame seeing her in that attire. As my usual practice, I was curious to know what was the material that was used for making such a beautiful attire. The content list detailed it out as 70 percent polyester and 30 percent silk. I did not take it much seriously when I saw the attire. But over the evening, I just thought of checking out what is the impact of such synthetic fashion polymers on the environment.

Over the past few decades, there has been a major shift in the materials chosen by manufacturers, designers and consumers for the clothes they are going to work and wear. There were times when we had created trade routes for the finest silk. We also know how cotton played a central role in shaping the modern social and economic institutions including the United Stated of America and the United Kingdom.

Since the arrival of NYLON the first synthetic fibre, fifty years ago, synthetic and man-made materials have taken centre stage. As of now, industry is filled with polyester, acrylic and nylon. The shift is not irrational. Synthetics are cheaper and easier to produce in large quantities. Even though these materials are good for the bottom line, it is damaging the environment in a big way. Considering a number of pollutants expelled by the clothing and apparel industry, from the estimates of Forbes, the industry is responsible for over 10% of global emissions, an estimate that gives an idea of the grand scale we are talking about.

The plastics are made from the petroleum gases and petroleum liquids, which are by-products of petroleum refining. As per rough estimates by OPEC, in a single year, almost 70 million barrels of oil are used in the manufacturing of polyester alone. This includes the consumption of oil both as a raw material and as fuel to generate the necessary energy used in the process. Globally we consumed 100 million tonnes of textiles in 2016. In that, over 65 million tonnes were petroleum based. As highlighted in Elizabeth Cline’s Overdressed: The Shockingly High Cost of Cheap Fashion, this quantum of production requires 145 million tonnes of coal and a couple of trillion gallons of water.

On the consumption side, in developed economies, it is estimated that each consumer buy anywhere between 60-70 garments every year and in developing economies it is around 20-30 garments and possibly in underdeveloped countries it may even be 0-5 too. This wide disparity of the fashion is supposed to encourage us for recycling the clothes. But do we do so?

According to the Environmental Protection Agency, 84 percent of unwanted clothes in the United States went to either a landfill or an incinerator and not to recycling. What is the impact? If we are talking about natural fibres, unlike banana peels, these natural clothes can’t decompose. The chemicals used in bleaching, dying and printing leach from the textiles and improperly sealed landfills into groundwater. The incinerators also release toxins into the air. The agency estimates that if the trashed textiles are put into a recycling program it be equivalent to taking 7.3 million cars and their carbon dioxide emissions off the road. The synthetic fibres, like polyester, nylon and acrylic on the other end take hundreds of years, if not a thousand, to biodegrade.

After this understanding, I am not so sure whether I should be in shame or the should believe that the angels would shame.

Possibly the closed-loop textile recycling could be an answer where the technology will enable a circular flow of resources in textiles. If we could separate blended fibre garments, dyes and other contaminants thus producing fibres comparable in quality and price to that produced from virgin-derived resources, the technology could be revolutionary. Tomorrow may come where we could get a discount on purchases for returning our own worn garments and could get fresh fashion made from old fashion.  Adidas, Levi’s, Nike and H&M are leading this game and would be the firms that could impact the future of what we wear and not the traditional Prada, Burberry and Gucci.

Categories
Economics Technology

Universal Basic Income – all pay and no work

How do you feel when you get paid freely for doing no work? In my previous post, we had discussed the possibility of Universal Basic Income (UBI) proposed by Thomas Paine – the price tag that we have given for the new era of the unemployed because of the emergence of automation and technology. It may surprise you to know that a partial UBI already existed in Alaska since 1982 and that a version of basic income was experimentally tested in the United States in the 1970s.

So let us understand the dynamics of universal basic income. A study, released by Oxfam, showed that just 57 billionaires in India have the same wealth as that of the bottom 70 percent population of the country. To give a global perspective, just 8 billionaires have the same amount of wealth as the poorest 50 percent of the world population. This statistics gives the extent of global income inequality. Now wonder we have just 32 million of 3210 million population of the world owns over 40 percent of the world wealth.

Anyway, what is the need of this universal income? It is predicted that automation will create nearly 15 million new jobs by 2025, but at the same time, wipe out nearly 25 million. The 10 million who is going to lose the jobs in the process would be the people who would find it difficult to upgrade their skills or those who are too old to switch the jobs. But how would they survive? Will the world of technology be morally responsible for supporting them?

Even some of the biggest technology tycoons including Elon Musk who are talking about changing the world for the better seem deeply concerned on what the very same technology could do to jobs in the long haul making universal basic income “necessary.” It is not just the individuals who are concerned about this. The entire political spectrum is concerned about this huge income disparity. The idea of unconditional or universal basic income is like social security for all. The cause of this thought is not just from the rising income inequality arising from technology dominance. It has the origins from the decades of stagnant wages, the transformation of lifelong careers into sub-hourly tasks, and world-changing events like Brexit and the vision of Trump. All of these concerns are pointing to the need to start a permanent income guarantee for everyone that could take care of the basic needs of an individual.

How will this make sense in the new economy? If we look at the operational aspect of this concept, it is a negative tax. An interesting process in which those earning below a certain point are given an additional income, and those earning above a certain point are taxed on additional income. To cut it short, even Ambani would receive the same amount as a person below the poverty line. Only difference it that Ambani will pay far more than that amount in new taxes for the government to pay for it.

But what about people then choosing not to work? Isn’t that a huge burden too? It is an interesting topic to debate. Let us look at implementing this in a developed market like the US where the data is handy. According to Gallup in the US, 70% of workers are not engaged in what they resulting in a productivity loss of around $500 billion per year. With UBI coming in, this disengaged workforce will say “no thanks” to the labour market enabling an opportunity for the rest of the people who want to do the jobs they want. The result is a transformed labour market of more engaged, more employed, better paid and more productive workers. Fewer people are excluded, and there’s perhaps more scope for all workers to become self-employed entrepreneurs. In addition, there are proven positive effects on social cohesion and physical and mental health.

Based on the evidence we already have and continue to build with the trial run of such a scheme in Mongolia, Finland and India, I firmly believe unconditional basic income as a new equal starting point for all. For resource-rich countries like Kuwait and Saudi Arabia, it will be an efficient method of utilisation and transfer of resource incomes. For populated countries like India and China, it will help the reduce the leakage of subsidies provided by public welfare distribution.Lastly, in developed economies, it will compensate for the advances in artificial intelligence, robotics, and other technologies that have questioned the future of work.

In addition, there are proven positive effects on social cohesion and physical and mental health. Based on these evidence we already have and with the trial run of such a scheme in Mongolia, Finland and India, I firmly believe unconditional basic income as a new equal starting point for all. For resource-rich countries such as Kuwait and Saudi Arabia, it will be an efficient method of utilisation and transfer of resource incomes. For populated countries like India and China, it will help to reduce the leakage of subsidies provided by public welfare systems. Lastly, in developed economies, it will compensate for the advances in artificial intelligence, robotics, and other technologies that have questioned the future of work.

If things work out as planned by the governments, we might have a better place to live with more equitable distribution of wealth.

Categories
Economics Fintech

In search of efficiency – financial exclusion and technological unemployment

Every day we hear about the firms that try to make the world a better place. The new age technology firms want to erase the sources of inconvenience and delay that irritate their consumers. Every time I take the ride-hailing services of Uber to avoid the waiting time for taxis, the Book my show to avoid the queues in the cinema halls, and pay through PayTM to avoid the inconvenience of cash, I always hear about operational efficiency. Such applications claim to bring convenience for the users and run campaigns on their ethos of innovations.
But are they sincerely doing what they are supposed to solve? Do the end users need such innovations? Do these product innovations eliminate too much of hassle? In short, are they aiding society rather than harm?
Let us take a recent economic hype created by the politicians and central bankers – the demonetization. When I went through the pain of demonetization, I realised that it is not just Indians who are suffering through the pain of cashless economy. This time when my quarterly debit card statement came, I scrolled through it. To my surprise hardly there was any cash debit from my account. Enormous emphasis is placed on improving online infrastructure and online activity, particularly in the Banking and Finance sector. When we are moving so aggressively to the presence-less, paper-less and cash-less economy, we tend to forget a few fundamentals.
Many of us are happy to tap cards or phones to get to a taxi, buy a coffee or pay for groceries. But it raises the prospect of a time when we no longer carry any cash at all.
This results in no spare change for the busker on the streets, the person sleeping rough in need of a hot drink, and the donation box. This might be the rise of a cashless nation that would be mean with street vendors, small merchants and the poorest inhabitants who cannot afford the instruments of so-called convenience. It may so happen then we may further divide the mainstream society based on such media of convenience – The traditional and the modern. The societies that are in dearth need for the financial inclusion may put pressure on the same traditional who are to be banked and signed up to the financial system through financial inclusion. Many of such poorest traditional are likely to remain outside of that system creating a bigger danger of financial exclusion.
In a keynote delivered at Mobile World Congress by Ajay Banga, Mastercard’s CEO spoke about the growing global risk of creating islands, where the unbanked traditionals transact only with each other. According to Fung Global Retail & Technology, even in Sweden and Netherlands that could become the world’s first completely cashless society, significant enthusiasm gap has emerged between the traditionals and the moderns.
Now let us look at the second aspect of automation and convenience. To give a perspective, a report put out in February 2016 by Citibank, in partnership with the University of Oxford, predicted that 47 percent of US jobs and 35 per cent of UK jobs are at risk of automation. In China, it’s a whopping 77 per cent, while across the OECD it’s an average of 57 percent. And three of the world’s ten largest employers, Foxconn, Walmart, and the US Department of Defence, are now replacing their workers with robots.
Predictions that automation will make humans redundant have been made before. During the Industrial Revolution textile workers, protested that machines and steam engines would destroy their livelihoods. The difference between the previous waves of automation and the current one is that workers had the option of moving from routine jobs in one industry to routine jobs in another in the earlier. But now the same data techniques that allow companies to improve their marketing and customer-service operations also give them the raw material to train machine-learning systems to perform the jobs of more and more people.
Are these developments leading to the concept of Universal Basic Income proposed by Thomas Paine, the 18th-century radical? Is this the price tag that we have given for the new era of the unemployed? Need to wait and see how the technologists, governments and central bankers would tame this problem.
Categories
Economics Technology

Agglomeration through hyperloop transport

A few months back I had been to a prominent hospital since my dad had to undergo an orthopaedic surgery. During my stay at the hospital, I got quite accustomed with the staff and they showed me an uncommon tranport mechanism. It moves the patient’s blood samples and prescription medicines across the hospitals through Pneumatic tubes. They are systems that propel cylindrical containers through networks of tubes by compressed air or by a partial vacuum. Even though it is an age old technology, of the late 19th and 20th century, I was impressed with the precision and the swiftness of the transport. Can such an integrated system be the framework of our future transport? Can this be the older working model of the proposed hyperloop powered by pneumatic energy?

Since the introduction of trains and cars in the early 19th century, nothing much has changed in the industry. We still rely on the modified forms of such transport mechanisms. But is the future going to be the same in the coming decades?

The transportation sector as we see it is around 5 trillion dollar industry. In the next few decades, it will be one of the industries that may see innovations. Such innovations could include driverless cars and public transports, intergalactic or interstellar travels and hyper loops. The hybrid of a Concorde and a railgun and an air hockey table – the hyperloop is expected to take the centre stage of this transformation. Even though it is not an innovative concept, the idea has gained enough of traction. Even India plans for its working hyperloop in the coming decade!  The first outlay is expected from New Delhi to Mumbai in 70 minutes flat, or three times faster than a commercial flight (a max speed of 760 miles per hour). The pilot funding of expected at $120 million. On the revenue side, a single tube could carry 1.44 lakh passengers daily at 40-second intervals with an average ticket price of under Rs 600 (around 10 dollars).

So how does it work? According to Elon Musk, the propounder of the system, it is a tube over or under the ground that contains a special low-pressure environment. The cars are propelled through this tube with high-speed fans that would compress and push the air for their propulsion. These cars would be floated in the chamber with Air bearings that would make these capsules to levitate in the tube to reduce friction. The entire system will be driven by solar power.

Now let us look at the economics of this transportation system. According to World bank the per-mile cost of building this loop is pegged at around $40 million per kilometre compared to High-Speed rail project at $56 million per km.

Can this technology play a bigger role to play in the future of freight transport too – an industry that powers the global trade? Given that we’re planning to move containers and pallets on-demand at speeds far in excess of today’s rail and highway options and far less expensively than by air freight, an integrated framework of such seamless nodal transport would be the future of not just human transport but of the goods too. This will reduce the inventory costs and have a better supply chain around each nodal city. Technically this is mentioned in economics as agglomeration – clustering of people and firms. This can lead to more innovative delivery mechanisms of medical/perishable goods and motivate regional economies for greater specialisation, thus reducing the overall cost and quality of global freight transport.

Categories
Economics Technology

Future of organ transplantation

A few days back, I came to know about my cousin in his 40s who is planning to get his kidney transplanted. He had an acute kidney failure because of his lifestyle and was waiting for a kidney from a donor. I was disappointed by seeing his pain and the inconvenience caused to him by dialysis. This is not just one story, we have millions waiting across the globe for organ transplantation.

Humans have around 10 different organs in our body that can be transplanted. These include kidneys, heart, liver, pancreas, intestines, lungs, bones, bone marrow, skin, and corneas. As per the Donate Life Foundation, 80% of the global organ demand constitute the kidneys with an average wait time of over 3 years. In 2016, for the first time, the organ transplants performed in the United States alone crossed 30,000. But, as we speak approximately four times of that number still awaits lifesaving organ transplants. Furthermore, around 22 people die every day waiting for an organ. From an Indian perspective, 5 lakh people across the India die each year due to non-availability of organs. One out five need a liver, but only one in hundred receive it. Two out of five need a kidney, but only one in twenty receive it.

Even though 8-10 brain dead potential donors are available in Intensive Care Units of any major city hospitals around the globe, the taboo of the donation still constrain the effectiveness of donation. Can the new stream of tissue engineering change the fate of modern demographics?

Yes. The fundamental change of making synthetic organs is going to allow the ageing population of the world to work until a later age before taking their pensions – an imminent concern both in developing and developed countries. The stunning fact is that the majority of the organ transplants are happening over 40 years of age.

To give an economic perspective, today almost one in ten are over 60 years old. By 2050, one in five will be over 60. On the other hand, when we consider the state support for the non-working age population, in 1950, there were 7.2 people aged 20–64 for every person of 65 or over in the OECD countries. But by 2010 this support ratio fell to 4.1 and is projected to reach just 2.1 by 2050. This demographic shift will put undue pressure on the working age population. To avoid this scenario, the option left for the government is to reduce the support to older demographics. This will force the old age population to remain fit and healthy and thus remain productive up to an age over 80. This leaves the septuagenarians and octogenarians to maintain a healthy lifestyle and if required replace the damaged or non-functional organs with fresh ones which would be available both from donors or through tissue engineering. Since we have seen a macro perspective of donations, let us see how tissue engineering is going to solve this problem?

Right after identifying the pluripotency (ability to develop to different organs) of stem cells after cloning Dolly, bio-engineering has gone to a different level of creativity. A few days back, Organovo world’s first publicly traded 3D bio-printing company, announced the medical success of the bio-printed liver and kidney with promising results. Like the complex, multi-cellular tissues found within a person, these human tissues are created through cell division; they mature and integrate into the tissue, forming connections with surrounding cells and contributing functionality throughout their lifespan. As individual cells within the tissue age, they eventually undergo cellular senescence and death—much as they would in a living tissue inside the body. This is the ultimate approach to the shortage of donor organs – manufacture and transplantation of bio-artificial organs. The latest trend is the chimaera – a mixture of cells from more than one species growing together as a single animal – resulting in human organs being produced in other animals. By perfecting the art of growing such chimeric replacement livers, kidneys and pancreases inside the animal hosts, the organ shortage may end. It may so happen that we may be ordering a homo-porcine kidney on Amazon soon by end of this decade.

Categories
Economics Technology

Economics of digital branding – recommendation algorithms

Not so long ago, I remember when I bought my first car. I methodically jotted down my priorities and all the available choices. After several discussion and debate with my better half, I arrived at the one that best met my requirement. I met a dealer in my area and he made the deal. Though it was quite simple then, the new era of digital sale is not the way it used to be. Does this decision of selecting my car getting transformed in the digital era by algorithms?

Today almost all the consumers have become promiscuous on their brand because of the choices available for them. This is just not the case with the brands that we buy every day but even with the brands that we aspire to buy in future. Today’s customer has the option to connect with myriad brands—through new media channels beyond the manufacturer’s and the retailer’s control or even knowledge—and evaluate a shifting array of them, often expanding the pool before narrowing it. After a purchase these consumers may remain aggressively engaged, publicly promoting or assailing the products they have bought through social media collaborating in the brands’ development, and challenging and shaping their meaning. This constitutes the digital identity of the brand. There are three basic elements to the brand identity. The first one is the value the product or the promise that the product tries to fulfil. The second is the aesthetics or the design element of the product. Finally, the fulfilment, which constitutes the economic model of the entire supply chain. These are the factors that structurally drive the information about a brand on the digital environment. This information with the inputs of recommendations that are provided by the digital media forms the basis of our decision making. In such a case, the choice that we make is our own or driven by someone else?

For example, today we have the youtube channels where a child un-box toys to the delight of toddlers around the world (The Ryan’s toy review) and a Swedish gamer with millions of teenage fans (PewDiePie), running one’s own virtual TV channel with multi-million followers and a few billion cumulative views. Have you ever wondered how they get to the top echelons of viewing? – The trick is done by the internet channels through suggestions or recommendations customised to you. The brain of such channels is – the recommender algorithm. The pioneers of this technique are the early adopters of this technology such as Apple, Facebook, Google and Microsoft which help them to make into the top 10 of the world’s most valuable brands. These are the companies that we touch, speak and feel every day and decide what we consume. If you really think the word of mouth marketing is gone, it is not. Today’s word of mouth is the social media. The key reason why the social media giants such as Facebook and Snapchat are so valuable is just because they are the identities of the new digital human.
The recommendation algorithm is used in a variety of areas including movies, music, news, books, research articles, search queries, social tags, experts, collaborators, jokes, restaurants, garments, financial services, life insurance, romantic partners (online dating), and you name it, it is there. The social media platforms and the e-commerce sites analyse the user’s past behaviour based on the links the user had clicked or the products he had purchased and similar decisions made by other users. This recommendation system can either constitute a top-down approach, in which the broad interests of the user is captured on a regular basis and then compared against the behaviour of other users. The recommendations to the user will not only include his interests but also interests of his peer groups. This is a collaborative approach and is the way google works. Using the huge user base it has google applies recommendations across its platforms. So now you know why once you play a specific video, you get similar videos on youtube.

The other option is a bottoms up approach by identifying the attributes of the product recommended in a standardised form (i.e., the key parameters of search) and identify similar products based on the defined attributes. A nice example is the music genome project. The project gets into the essence of music at the most fundamental level. Over 450 attributes such as gender of lead vocalist, prevalent use of groove, the level of distortion on the instruments, type of background vocals, etc. are used to describe songs. These attributes are mapped to the user preferences to make musical selections of a certain genre based on the user’s preferences. The output is the patented music streaming service powered by the music genome project the Pandora Internet Radio. The movie databases such as Rotten Tomatoes and IMDB also uses the same technique.

Obviously, there has to be a hybrid approach. Netflix uses this approach. It makes recommendations by comparing the watching habits of similar users as well as by offering movies that share characteristics with films that a user has rated highly. This recommendation technique is now extensively used on internet-accessing smart-phones also for GPS navigation and location based services.

But what is the flipside to these recommendation algorithms? They will take off adventure and serendipity on our choices. These algorithms will slowly discourage exploration. Soon there will be a method to the madness and the human behaviour will become more predictable. Amazon will suggest similar books to you, Netflicks will show you the similar movie, SoundCloud will play the similar songs and obviously you will end up taking the same route to the office. So who wins in the end? It would be these internet giants that control the users and their preferences. These goliaths will be able to muscle with the sellers, (I would say the car company, that want me to but the car in future) who want to access the users through their platform. So it is neither me nor my car company that would benefit. It is the broker that wins. This will catapult the oligopoly of our internet companies that touch our daily lives to a different level – driving them to not billion dollar enterprises but trillion-dollar enterprises.